Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Scroll ignore
scroll-viewporttrue
scroll-pdftrue
scroll-officetrue
scroll-chmtrue
scroll-docbooktrue
scroll-eclipsehelptrue
scroll-htmltrue
scroll-epubtrue

Open in new tab

About Collectors

Collectors are extractors that are developed and managed by you (A customer of K).

...

  1. Deploying and orchestrating the extract code

  2. Managing a high water mark so the extract only pull the latest metadata

  3. Storing and pushing the extracts to your K instance.

...

Pre-requisites

  • Python 3.6 - 3.9

  • Access to the KADA Collector repository that contains the Redshift whl

    • The repository is currently hosted in KADA’s Azure Blob Storage. You will be given a SAS token to access the repository. Reach out to KADA Support (support@kada.ai) if you do not have access.

    • Download the Redshift whl (e.g. kada_collectors_extractors_redshift-#.#.#-py3-none-any.whl)

  • Access to K landing directory

  • Access to Redshift (see section below)

...

  • dev (The extractor uses the dev database as a test access point)

  • All other databases that you want onboarded

...

Step 1: Create the Source in K

Create a Redshift source in K

...

  • Give the source a Name - e.g. Redshift Production

  • Add the Host name for the Redshift Server

  • Click Finish Setup

...

Step 2: Getting Access to the Source Landing Directory

Insert excerpt
Collector Method
Collector Method
namelanding

...

Step 3: Install the Collector

It is recommended to use a python environment such as pyenv or pipenv if you are not intending to install this package at the system level.

...

Code Block
pip install kada_collectors_extractors_redshift-#.#.#-py3-none-any.whl

...

Step 4: Configure the Collector

The collector requires a set of parameters to connect to and extract metadata from Redshift.

...

Code Block
languagejson
{
    "host": "",
    "username": "",
    "password": "",
    "databases": [],
    "port": 5439,
    "tunnel": false,
    "output_path": "/tmp/output",
    "mask": true
}

...

Step 5: Run the Collector

The following code is an example of how to run the extractor. You may need to uplift this code to meet any code standards at your organisation.

...

If you are handling external arguments of the runner yourself, you’ll need to consider additional items for the run method. Refer to this document for more information https://kadaai.atlassian.net/wiki/spaces/KSL/pages/1902411777/Additional+Notes#The-run-method

...

Step 6: Check the Collector Outputs

K Extracts

A set of files (eg metadata, databaselog, linkages, events etc) will be generated. These files will appear in the output_path directory you set in the configuration details

...

A high water mark file is created in the same directory as the execution called redshift_hwm.txt and produce files according to the configuration JSON. This file is only produced if you call the publish_hwm method.

...

Step 7: Push the Extracts to K

Once the files have been validated, you can push the files to the K landing directory.

You can use Azure Storage Explorer if you want to initially do this manually. You can push the files using python as well (see Airflow example below)

...

Example: Using Airflow to orchestrate the Extract and Push to K

Code Block
languagepy
# built-in
import os

# Installed
from airflow.operators.python_operator import PythonOperator
from airflow.models.dag import DAG
from airflow.operators.dummy import DummyOperator
from airflow.utils.dates import days_ago
from airflow.utils.task_group import TaskGroup

from plugins.utils.azure_blob_storage import AzureBlobStorage

from kada_collectors.extractors.utils import load_config, get_hwm, publish_hwm, get_generic_logger
from kada_collectors.extractors.tableau import Extractor

# To be configed by the customer.
# Note variables may change if using a different object store.
KADA_SAS_TOKEN = os.getenv("KADA_SAS_TOKEN")
KADA_CONTAINER = ""
KADA_STORAGE_ACCOUNT = ""
KADA_LANDING_PATH = "lz/tableau/landing"
KADA_EXTRACTOR_CONFIG = {
    "server_address": "http://tabserver",
    "username": "user",
    "password": "password",
    "sites": [],
    "db_host": "tabserver",
    "db_username": "repo_user",
    "db_password": "repo_password",
    "db_port": 8060,
    "db_name": "workgroup",
    "meta_only": False,
    "retries": 5,
    "dry_run": False,
    "output_path": "/set/to/output/path",
    "mask": True,
    "mapping": {}
}

# To be implemented by the customer. 
# Upload to your landing zone storage.
def upload():
  output = KADA_EXTRACTOR_CONFIG['output_path']
  for filename in os.listdir(output):
      if filename.endswith('.csv'):
        file_to_upload_path = os.path.join(output, filename)

        AzureBlobStorage.upload_file_sas_token(
            client=KADA_SAS_TOKEN,
            storage_account=KADA_STORAGE_ACCOUNT,
            container=KADA_CONTAINER, 
            blob=f'{KADA_LANDING_PATH}/{filename}', 
            local_path=file_to_upload_path
        )

with DAG(dag_id="taskgroup_example", start_date=days_ago(1)) as dag:
  
    # To be implemented by the customer.
    # Retrieve the timestamp from the prior run
    start_hwm = 'YYYY-MM-DD HH:mm:SS'
    end_hwm = 'YYYY-MM-DD HH:mm:SS' # timestamp now
    
    ext = Extractor(**KADA_EXTRACTOR_CONFIG)
    
    start = DummyOperator(task_id="start")

    with TaskGroup("taskgroup_1", tooltip="extract tableau and upload") as extract_upload:
        task_1 = PythonOperator(
            task_id="extract_tableau",
            python_callable=ext.run, 
            op_kwargs={"start_hwm": start_hwm, "end_hwm": end_hwm},
            provide_context=True,
        )
        
        task_2 = PythonOperator(
            task_id="upload_extracts",
            python_callable=upload, 
            op_kwargs={},
            provide_context=True,
        )

        # To be implemented by the customer. 
        # Timestamp needs to be saved for next run
        task_3 = DummyOperator(task_id='save_hwm') 

    end = DummyOperator(task_id='end')

    start >> extract_upload >> end

...