Info |
---|
This collector is for Informatica versions prior to Informatica Intelligent Cloud Services (IICS) |
About Collectors
...
Excerpt- |
---|
...
scroll-viewport | true |
---|---|
scroll-pdf | true |
scroll-office | true |
scroll-chm | true |
scroll-docbook | true |
scroll-eclipsehelp | true |
scroll-html | true |
scroll-epub | true |
...
About Collectors
...
Pre-requisites
Informatica 9.1+ with repository hosted in Oracle.
Python 3.6 - 3.10
Access to K landing directory
Access to Informatica Repository (see section below)
Establish Informatica Repository Access
Create an Oracle user with read access to all tables in the Informatica repository database.
Establish Informatica Server Access
...
Include Page | ||||||
---|---|---|---|---|---|---|
|
...
Pre-requisites
Collector Server Minimum Requirements
Insert excerpt | ||||||||
---|---|---|---|---|---|---|---|---|
|
IICS Requirements
IICS with access to both V2 and V3 APIs
Establish IICS Access
Dean Nguyen need to populate this part with screenshots of the check boxes
Note |
---|
Collector Limitations
|
...
Step 1: Create the Source in K
Create a Informatica IICS source in K
Go to Settings, Select Sources and click Add Source
Select “Load from File” option
Give the source a Name - e.g. Informatica IICS Production
Add the Host name for the Informatica ServerIICS Production
Click Finish Setup
...
Step 2: Getting Access to the Source Landing Directory
...
Code Block |
---|
pip install kada_collectors_lib-<version>-none-any.whl |
You may require an ODBC package for the OS to be installed as well as an oracle client library package if do you not have one already, see https://www.oracle.com/au/database/technologies/instant-client.html |
...
Step 4
...
In your environment you maybe using runtime overrides for parameters in your Informatica jobs. KADA uses the runtime overrides to resolve lineage for parameter driven jobs.
Use the script below to generate infacmd commands to extract session logs in XML format.
Info |
---|
Replace any |
...
language | sql |
---|
...
:
...
The commands can be be combined in a bat script like the example below to dump out the latest log per session.
Code Block |
---|
@echo off
cd /d C:
cd "C:\Informatica\9.1.0\clients\DeveloperClient\infacmd"
echo %cd%
<ADD CALLS from SQL here>
pause |
Note |
---|
The session logs can take a long time to generate. We recommended that you run this step on an adhoc frequency when your Informatica jobs change. |
Use kada_informatica_runtime_parser.py
to generate a runtime_session_overrides.json
which will be used by the Informatica extractor.
kada_informatica_runtime_parser.py
Code Block | ||
---|---|---|
| ||
import os
import argparse
from kada_collectors.extractors.utils import load_config, get_generic_logger
from kada_collectors.extractors.informatica import runtime_parser
get_generic_logger('root') # Set to use the root logger, you can change the context accordingly or define your own logger
_type = 'informatica_runtime_parser'
dirname = os.path.dirname(__file__)
filename = os.path.join(dirname, 'kada_{}_extractor_config.json'.format(_type))
parser = argparse.ArgumentParser(description='KADA Informatica Runtime Parser.')
parser.add_argument('--config', '-c', dest='config', default=filename, help='Location of the configuration json, default is the config json in the same directory as the script.')
args = parser.parse_args()
config_args = load_config(args.config)
runtime_parser(**{"input_path": config_args["input_path"], "output_path": config_args["output_path"]}) |
...
Configure the Collector
The collector requires a set of parameters to connect to and extract metadata from InformaticaIICS
FIELD | FIELD TYPE | DESCRIPTION | EXAMPLE | |
---|---|---|---|---|
username | string | Username to log into OracleIICS | “myuser” | |
password | string | Password to log into OracleIICS | ||
dsnlogin_url | string | Datasource Name for Oracle, this can be one of the following forms <tnsname> | “preprod” | |
repo_owner | string | This is the owner of all the tables required by the extractor | “inf” | |
oracle_client_path | string | Full path to the location of the Oracle Client libraries | “/tmp/drivers/lib/oracleinstantclient_11_9” | |
cached | boolean | If set to true if will prevent re-extracting data | false | |
input_path | string | Absolute path to the input location where | “/tmp/input”This is the base url for your IICS login service, see https://docs.informatica.com/integration-cloud/b2b-gateway/current-version/rest-api-reference/platform-rest-api-version-2-resources/login.html for more details | |
days_active | integer | Number of days which a task must have run to be considered active for lineage resolution | 60 | |
timeout | integer | Timeout in seconds for IICS API responses, sometimes IICS server can be slow so tune this accordingly if needed | 20 | |
output_path | string | Absolute path to the output location where files are to be written | “/tmp/output” | |
mask | boolean | To enable masking or not | true | |
compress | boolean | To gzip the output or not | true |
KADA provides an out of the box script that reads a configuration JSON file and runs the extractor. Below is the configuration file.
kada_informaticaiics_extractor_config.json
Code Block | ||
---|---|---|
| ||
{ "username": "", "password": "", "dsnlogin_url": "", "repo_ownertimeout": ""30, "oracleactive_client_pathdays": ""60, "cachedmapping": false{}, "input_path": "/tmp/input", "output_path": "/tmp/output", "mask": true, "compress": true } |
...
Step
...
5: Run the Collector
The following code is an example of how to run the extractor. You may need to uplift this code to meet any code standards at your organisation.
...
This is the wrapper script: kada_informaticaiics_extractor.py
Code Block | ||
---|---|---|
| ||
import os import argparse from kada_collectors.extractors.utils import load_config, get_hwm, publish_hwm, get_generic_logger from kada_collectors.extractors.informaticaiics import Extractor get_generic_logger('root') # Set to use the root logger, you can change the context accordingly or define your own logger _type = 'informaticaiics' dirname = os.path.dirname(__file__) filename = os.path.join(dirname, 'kada_{}_extractor_config.json'.format(_type)) parser = argparse.ArgumentParser(description='KADA InformaticaIICS Extractor.') parser.add_argument('--config', '-c', dest='config', default=filename, help='Location of the configuration json, default is the config json in the same directory as the script.') parser.add_argument('--name', '-n', dest='name', default=_type, help='Name of the collector instance.') args = parser.parse_args() start_hwm, end_hwm = get_hwm(_typeargs.name) ext = Extractor(**load_config(args.config)) ext.test_connection() ext.run(**{"start_hwm": start_hwm, "end_hwm": end_hwm}) publish_hwm(_type, end_hwm) |
...
If you are handling external arguments of the runner yourself, you’ll need to consider the following for the run method https://kadaai.atlassian.net/wiki/spaces/KSL/pages/1902411777/Additional+Notes#Extractor-run-method
Code Block | ||
---|---|---|
| ||
from kada_collectors.extractors.snowflake import Extractor kwargs = {my args} # However you choose to construct your args hwm_kwrgs = {"start_hwm": "end_hwm": } # The hwm values ext = Extractor(**kwargs) ext.run(**hwm_kwrgs) |
...
Code Block | ||
---|---|---|
| ||
class Extractor(username: str = None, password: str = None, dsnlogin_url: str = None, \ repoactive_ownerdays: str int= None60, oracle_client_pathmapping: str = None, \ cached: bool = False, input_path: str = './input', \ dict={}, timeout: int=30, output_path: str = './output', mask: bool = False, compress: bool = False) -> None |
username: username to sign into server
password: password to sign into server
dsn: server login_url: IICS login address
repoactive_owner: Oracle table owner
oracle_client_path: library path for the Oracle Instant Client
cached: Set to prevent re-extracting data
input_path: full or relative path to the directory containing the input filesdays: assessment window in days to consider tasks to be active for lineage resolution
timeout: timeout in seconds for API responses
output_path: full or relative path to where the outputs should go
compress: To gzip output mask: to mask files or not
The runtime parser can also be called in isolation
Code Block | ||
---|---|---|
| ||
from kada_collectors.extractors.informatica import runtime_parser
kwargs = {my args} # However you choose to construct your args
runtime_parser(**kwargs) |
Code Block | ||
---|---|---|
| ||
def runtime_parser: (input_path: str = './input', output_path: str = './output') -> None |
input_path: full or relative path to the directory containing the input files
output_path: full or relative path to where the outputs should go
To edit the internal SQL being run refer to https://kadaai.atlassian.net/wiki/spaces/KSL/pages/1902411777/Additional+Notes#Adding-Custom-SQL
...
compress: To gzip output files or not
...
Step 6: Check the Collector Outputs
K Extracts
A set of files (eg metadata, databaselog, linkages, events etc) will be generated. These files will appear in the output_path directory you set in the configuration details
...
A high water mark file is created in the same directory as the execution called informaticaiics_hwm.txt and produce files according to the configuration JSON. This file is only produced if you call the publish_hwm method.
If you want prefer file managed hwm, you can edit the location of the hwn by following these instructions Additional Notes
...
Step 8: Push the Extracts to K
...