Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Info

This collector is for Informatica versions prior to Informatica Intelligent Cloud Services (IICS)

About Collectors

...

Excerpt-

...

scroll-viewporttrue
scroll-pdftrue
scroll-officetrue
scroll-chmtrue
scroll-docbooktrue
scroll-eclipsehelptrue
scroll-htmltrue
scroll-epubtrue

...

Open in new tab

About Collectors

...

Pre-requisites

  • Informatica 9.1+ with repository hosted in Oracle.

  • Python 3.6 - 3.10

  • Access to K landing directory

  • Access to Informatica Repository (see section below)

Establish Informatica Repository Access

Create an Oracle user with read access to all tables in the Informatica repository database.

Establish Informatica Server Access

...

Include Page
Collector Method
Collector Method
nameabout

...

Pre-requisites

Collector Server Minimum Requirements

Insert excerpt
Collector Method
Collector Method
nameCollectorServerSpec
nopaneltrue

IICS Requirements

  • IICS with access to both V2 and V3 APIs

  • Establish IICS Access

    Dean Nguyen need to populate this part with screenshots of the check boxes

Note

Collector Limitations

...

Step 1: Create the Source in K

Create a Informatica IICS source in K

  • Go to Settings, Select Sources and click Add Source

  • Select “Load from File” option

  • Give the source a Name - e.g. Informatica IICS Production

  • Add the Host name for the Informatica ServerIICS Production

  • Click Finish Setup

...

Step 2: Getting Access to the Source Landing Directory

...

info
Code Block
pip install kada_collectors_lib-<version>-none-any.whl

You may require an ODBC package for the OS to be installed as well as an oracle client library package if do you not have one already, see https://www.oracle.com/au/database/technologies/instant-client.html

...

Step 4

...

In your environment you maybe using runtime overrides for parameters in your Informatica jobs. KADA uses the runtime overrides to resolve lineage for parameter driven jobs.

Use the script below to generate infacmd commands to extract session logs in XML format.

Info

Replace any < > with values for your Informatica environment.

...

languagesql

...

:

...

The commands can be be combined in a bat script like the example below to dump out the latest log per session.

Code Block
@echo off
cd /d C:
cd "C:\Informatica\9.1.0\clients\DeveloperClient\infacmd"
echo %cd%
<ADD CALLS from SQL here>
pause
Note

The session logs can take a long time to generate. We recommended that you run this step on an adhoc frequency when your Informatica jobs change.

Use kada_informatica_runtime_parser.py to generate a runtime_session_overrides.json which will be used by the Informatica extractor.

kada_informatica_runtime_parser.py

Code Block
languagepy
import os
import argparse
from kada_collectors.extractors.utils import load_config, get_generic_logger
from kada_collectors.extractors.informatica import runtime_parser

get_generic_logger('root') # Set to use the root logger, you can change the context accordingly or define your own logger

_type = 'informatica_runtime_parser'
dirname = os.path.dirname(__file__)
filename = os.path.join(dirname, 'kada_{}_extractor_config.json'.format(_type))

parser = argparse.ArgumentParser(description='KADA Informatica Runtime Parser.')
parser.add_argument('--config', '-c', dest='config', default=filename, help='Location of the configuration json, default is the config json in the same directory as the script.')
args = parser.parse_args()

config_args = load_config(args.config)

runtime_parser(**{"input_path": config_args["input_path"], "output_path": config_args["output_path"]})

...

Configure the Collector

The collector requires a set of parameters to connect to and extract metadata from InformaticaIICS

FIELD

FIELD TYPE

DESCRIPTION

EXAMPLE

username

string

Username to log into OracleIICS

“myuser”

password

string

Password to log into OracleIICS

dsnlogin_url

string

Datasource Name for Oracle, this can be one of the following forms

<tnsname>
<host/servicename>

“preprod”

local.example.com/oraservice”

repo_owner

string

This is the owner of all the tables required by the extractor

“inf”

oracle_client_path

string

Full path to the location of the Oracle Client libraries

“/tmp/drivers/lib/oracleinstantclient_11_9”

cached

boolean

If set to true if will prevent re-extracting data

false

input_path

string

Absolute path to the input location where runtime_session_overrides.json is placed

“/tmp/input”This is the base url for your IICS login service, see https://docs.informatica.com/integration-cloud/b2b-gateway/current-version/rest-api-reference/platform-rest-api-version-2-resources/login.html for more details

https://dm-ap.informaticacloud.com/ma/api/v2/user/login

days_active

integer

Number of days which a task must have run to be considered active for lineage resolution

60

timeout

integer

Timeout in seconds for IICS API responses, sometimes IICS server can be slow so tune this accordingly if needed

20

output_path

string

Absolute path to the output location where files are to be written

“/tmp/output”

mask

boolean

To enable masking or not

true

compress

boolean

To gzip the output or not

true

KADA provides an out of the box script that reads a configuration JSON file and runs the extractor. Below is the configuration file.

kada_informaticaiics_extractor_config.json

Code Block
languagejson
{
    "username": "",
    "password": "",
    "dsnlogin_url": "",
    "repo_ownertimeout": ""30,
    "oracleactive_client_pathdays": ""60,
    "cachedmapping": false{},
    "input_path": "/tmp/input",
    "output_path": "/tmp/output",
    "mask": true,
    "compress": true
}

...

Step

...

5: Run the Collector

The following code is an example of how to run the extractor. You may need to uplift this code to meet any code standards at your organisation.

...

This is the wrapper script: kada_informaticaiics_extractor.py

Code Block
languagepy
import os
import argparse
from kada_collectors.extractors.utils import load_config, get_hwm, publish_hwm, get_generic_logger
from kada_collectors.extractors.informaticaiics import Extractor

get_generic_logger('root') # Set to use the root logger, you can change the context accordingly or define your own logger

_type = 'informaticaiics'
dirname = os.path.dirname(__file__)
filename = os.path.join(dirname, 'kada_{}_extractor_config.json'.format(_type))

parser = argparse.ArgumentParser(description='KADA InformaticaIICS Extractor.')
parser.add_argument('--config', '-c', dest='config', default=filename, help='Location of the configuration json, default is the config json in the same directory as the script.')
parser.add_argument('--name', '-n', dest='name', default=_type, help='Name of the collector instance.')
args = parser.parse_args()

start_hwm, end_hwm = get_hwm(_typeargs.name)

ext = Extractor(**load_config(args.config))
ext.test_connection()
ext.run(**{"start_hwm": start_hwm, "end_hwm": end_hwm})

publish_hwm(_type, end_hwm)

...

If you are handling external arguments of the runner yourself, you’ll need to consider the following for the run method https://kadaai.atlassian.net/wiki/spaces/KSL/pages/1902411777/Additional+Notes#Extractor-run-method

Code Block
languagepy
from kada_collectors.extractors.snowflake import Extractor

kwargs = {my args} # However you choose to construct your args
hwm_kwrgs = {"start_hwm": "end_hwm": } # The hwm values

ext = Extractor(**kwargs)
ext.run(**hwm_kwrgs)

...

Code Block
languagepy
class Extractor(username: str = None, password: str = None, dsnlogin_url: str = None, \
    repoactive_ownerdays: str int= None60, oracle_client_pathmapping: str = None, \
    cached: bool = False, input_path: str = './input', \
    dict={}, timeout: int=30, 
  output_path: str = './output', mask: bool = False, compress: bool = False) -> None

username: username to sign into server
password: password to sign into server
dsn: server login_url: IICS login address
repoactive_owner: Oracle table owner
oracle_client_path: library path for the Oracle Instant Client
cached: Set to prevent re-extracting data
input_path: full or relative path to the directory containing the input filesdays: assessment window in days to consider tasks to be active for lineage resolution
timeout: timeout in seconds for API responses
output_path: full or relative path to where the outputs should go
compress: To gzip output mask: to mask files or not

The runtime parser can also be called in isolation

Code Block
languagepy
from kada_collectors.extractors.informatica import runtime_parser

kwargs = {my args} # However you choose to construct your args

runtime_parser(**kwargs)
Code Block
languagepy
def runtime_parser: (input_path: str = './input', output_path: str = './output') -> None

input_path: full or relative path to the directory containing the input files
output_path: full or relative path to where the outputs should go

To edit the internal SQL being run refer to https://kadaai.atlassian.net/wiki/spaces/KSL/pages/1902411777/Additional+Notes#Adding-Custom-SQL

...

compress: To gzip output files or not

...

Step 6: Check the Collector Outputs

K Extracts

A set of files (eg metadata, databaselog, linkages, events etc) will be generated. These files will appear in the output_path directory you set in the configuration details

...

A high water mark file is created in the same directory as the execution called informaticaiics_hwm.txt and produce files according to the configuration JSON. This file is only produced if you call the publish_hwm method.

If you want prefer file managed hwm, you can edit the location of the hwn by following these instructions Additional Notes

...

Step 8: Push the Extracts to K

...