Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Info

Open in new tab

About Collectors

Collectors are extractors that are developed and managed by you (A customer of K).

...

There are several reasons why you may use a collector vs the direct connect extractor:

  1. You are using the KADA SaaS offering and it cannot connect to your sources due to firewall restrictions

  2. You want to push metadata to KADA rather than allow it pull data for Security reasons

  3. You want to inspect the metadata before pushing it to K

Using a collector requires you to manage

  1. Deploying and orchestrating the extract code

  2. Managing a high water mark so the extract only pull the latest metadata

  3. Storing and pushing the extracts to your K instance.

...

Pre-requisites

  • Python 3.6 - 3.10

  • MSDB database / SQLServer DB access

    • We currently only support SSIS package deployments to the MSDB database and not project deployments which deploy to SSISDB database, please advise KADA if you use project deployments against SSISDB

    • The collector will need access to the underlying SQLServer Database with permissions to read the following tables is the SSIS main databases:

      • MSDB.DBO.SYSSSISPACKAGES

      • <SSIS Logging Database>.DBO.SYSSSISLOG where <SSIS Logging Database> is the database configured for SSIS logging

  • Access to the KADA Collector repository

    • The repository is currently hosted in KADA’s Azure Blob Storage. You will be given a SAS token to access the repository. Reach out to KADA Support (support@kada.ai) if you do not have access.

    • Download the SSIS whl (e.g. kada_collectors_extractors_ssis-#.#.#-py3-none-any.whl)

    K landing directory

...

Step 1: Create the Source in K

Create a SSIS source in K

...

  • Give the source a Name - e.g. SSIS Production

  • Add the Host name for the SSIS Server

  • Click Finish Setup

...

Step 2: Getting Access to the Source Landing Directory

Insert excerpt
CollectorsCollector MethodCollectors
Collector Method
namelanding

...

Step 3: Install the Collector

It is recommended to use a python environment such as pyenv or pipenv if you are not intending to install this package at the system level.

Some python packages also have dependencies on the OS level packages, so you may be required to install additional OS packages if the below fails to install.

You can download the Latest Core Library and SSIS whl via Platform Settings → SourcesDownload Collectors

...

Run the following command to install the collector

Code Block
pip install kada_collectors_extractors_ssis-#.#.#-py3-none-any.whl

...

Step 4: Configure the Collector

The collector requires a set of parameters to connect to and extract metadata from SSIS.

...

Code Block
languagejson
{
    "server": "",
    "username": "",
    "password": "",
    "logging_database": "ssis_logging",
    "mapping": {},
    "driver": "ODBC Driver 17 for SQL Server",
    "output_path": "/tmp/output",
    "mask": true
}

...

Step 5: Run the Collector

The following code is an example of how to run the extractor. You may need to uplift this code to meet any code standards at your organisation.

...

username: username to sign into sqlserver
password: password to sign into sqlserver
server: sqlserver host
driver: sqlserver driver name
logging_database: Logging Database name for SSIS
mapping: Dict of DNS to database and hostnames
output_path: full or relative path to where the outputs should go
mask: To mask the META/DATABASE_LOG files or not

...

Step 6: Check the Collector Outputs

K Extracts

A set of files (eg metadata, databaselog, linkages, events etc) will be generated. These files will appear in the output_path directory you set in the configuration details

...

A high water mark file is created in the same directory as the execution called ssis_hwm.txt and produce files according to the configuration JSON. This file is only produced if you call the publish_hwm method.

...

Step 7: Push the Extracts to K

Once the files have been validated, you can push the files to the K landing directory.

You can use Azure Storage Explorer if you want to initially do this manually. You can push the files using python as well (see Airflow example below)

...

Example: Using Airflow to orchestrate the Extract and Push to K

Code Block
languagepy
# built-in
import os

# Installed
from airflow.operators.python_operator import PythonOperator
from airflow.models.dag import DAG
from airflow.operators.dummy import DummyOperator
from airflow.utils.dates import days_ago
from airflow.utils.task_group import TaskGroup

from plugins.utils.azure_blob_storage import AzureBlobStorage

from kada_collectors.extractors.utils import load_config, get_hwm, publish_hwm, get_generic_logger
from kada_collectors.extractors.tableau import Extractor

# To be configed by the customer.
# Note variables may change if using a different object store.
KADA_SAS_TOKEN = os.getenv("KADA_SAS_TOKEN")
KADA_CONTAINER = ""
KADA_STORAGE_ACCOUNT = ""
KADA_LANDING_PATH = "lz/tableau/landing"
KADA_EXTRACTOR_CONFIG = {
    "server_address": "http://tabserver",
    "username": "user",
    "password": "password",
    "sites": [],
    "db_host": "tabserver",
    "db_username": "repo_user",
    "db_password": "repo_password",
    "db_port": 8060,
    "db_name": "workgroup",
    "meta_only": False,
    "retries": 5,
    "dry_run": False,
    "output_path": "/set/to/output/path",
    "mask": True,
    "mapping": {}
}

# To be implemented by the customer. 
# Upload to your landing zone storage.
def upload():
  output = KADA_EXTRACTOR_CONFIG['output_path']
  for filename in os.listdir(output):
      if filename.endswith('.csv'):
        file_to_upload_path = os.path.join(output, filename)

        AzureBlobStorage.upload_file_sas_token(
            client=KADA_SAS_TOKEN,
            storage_account=KADA_STORAGE_ACCOUNT,
            container=KADA_CONTAINER, 
            blob=f'{KADA_LANDING_PATH}/{filename}', 
            local_path=file_to_upload_path
        )

with DAG(dag_id="taskgroup_example", start_date=days_ago(1)) as dag:
  
    # To be implemented by the customer.
    # Retrieve the timestamp from the prior run
    start_hwm = 'YYYY-MM-DD HH:mm:SS'
    end_hwm = 'YYYY-MM-DD HH:mm:SS' # timestamp now
    
    ext = Extractor(**KADA_EXTRACTOR_CONFIG)
    
    start = DummyOperator(task_id="start")

    with TaskGroup("taskgroup_1", tooltip="extract tableau and upload") as extract_upload:
        task_1 = PythonOperator(
            task_id="extract_tableau",
            python_callable=ext.run, 
            op_kwargs={"start_hwm": start_hwm, "end_hwm": end_hwm},
            provide_context=True,
        )
        
        task_2 = PythonOperator(
            task_id="upload_extracts",
            python_callable=upload, 
            op_kwargs={},
            provide_context=True,
        )

        # To be implemented by the customer. 
        # Timestamp needs to be saved for next run
        task_3 = DummyOperator(task_id='save_hwm') 

    end = DummyOperator(task_id='end')

    start >> extract_upload >> end

...