Document toolboxDocument toolbox

Athena (via Collector method) - v2.0.0

This collector is for Informatica versions prior to Informatica Intelligent Cloud Services (IICS)

About Collectors

Collector Method

Pre-requisites

  • Informatica 9.1+ with repository hosted in Oracle.

  • Python 3.6 - 3.10

  • Access to the KADA Collector repository that contains the Informatica whl

    • The repository is currently hosted in KADA’s Azure Blob Storage. You will be given a SAS token to access the repository. Reach out to KADA Support (support@kada.ai) if you do not have access.

    • Download the Informatica whl (e.g. kada_collectors_extractors_informatica-#.#.#-py3-none-any.whl)

  • Access to K landing directory

  • Access to Informatica Repository (see section below)

 

Establish Informatica Repository Access

Create an Oracle user with read access to all tables in the Informatica repository database.

Establish Informatica Server Access

Create a user that has read access to the Informatica Server.

 


Step 1: Create the Source in K

Create a Informatica source in K

  • Go to Settings, Select Sources and click Add Source

  • Select “Load from File” option

  • Give the source a Name - e.g. Informatica Production

  • Add the Host name for the Informatica Server

  • Click Finish Setup


Step 2: Getting Access to the Source Landing Directory

Collector Method

Step 3: Install the Collector

It is recommended to use a python environment such as pyenv or pipenv if you are not intending to install this package at the system level.

Some python packages also have dependencies on the OS level packages, so you may be required to install additional OS packages if the below fails to install.

Run the following command to install the collector

pip install kada_collectors_extractors_informatica-2.0.0-py3-none-any.whl

You may require an ODBC package for the OS to be installed as well as an oracle client library package if do you not have one already, see Oracle Instant Client - Free tools and libraries for connecting to Oracle Database | Oracle Australia


Step 4: Generate runtime mappings

In your environment you maybe using runtime overrides for parameters in your Informatica jobs. KADA uses the runtime overrides to resolve lineage for parameter driven jobs.

Use the script below to generate infacmd commands to extract session logs in XML format.

Replace any < > with values for your Informatica environment.

select 'call infacmd.bat isp getsessionlog -dn <INFORMATICA_DOMAIN> -hp <HOST>:<PORT> -un <SERVER USERNAME> -pd <SERVER PASSWORD> -is <SERVERNAME> -rs <REPO NAME> -ru <REPO USERNAME> -rp <REPO PASSWORD> -fm xml -fn ' || ws.subject_area || ' -wf ' || ws.workflow_name || ' -ss ' || CASE WHEN hierarchy_structure is null then ws.instance_name ELSE '"' || substr(hierarchy_structure, 2) || '"' END || ' -lo <C:\\output\\path\\for\\logs\\>' || ws.workflow_id || '_' || ws.task_id || '_' || ws.instance_id as cmd from ( SELECT ti.instance_name, ti.task_id, ti.version_number, wws.instance_id, wf.workflow_id, wf.workflow_name, wf.workflow_comments, wf.server_name, wf.subject_area, hierarchy_structure, path FROM ( select path , TO_NUMBER(substr(path, 2, instr(path,'/',1, 2)-2)) as workflow_id , TO_NUMBER(substr(path, -instr(reverse(path),'/', 1, 2)+1, instr(reverse(path),'/', 1, 2)-2)) as task_id , hierarchy_structure , instance_id from (SELECT DISTINCT '/' || temp1.task_id AS path , temp1.task_name AS hierarchy_structure , 0 as instance_id FROM opb_task temp1, opb_subject temp2 WHERE temp1.subject_id = temp2.subj_id AND temp1.task_type = 71 -- workflows UNION ALL SELECT DISTINCT temp1.path , temp1.task_name AS hierarchy_structure , instance_id FROM (SELECT opb_task_inst.workflow_id, opb_task_inst.task_id, opb_task_inst.instance_id, LEVEL depth, SYS_CONNECT_BY_PATH(opb_task_inst.workflow_id ,'/') || '/' || opb_task_inst.task_id || '/' path, SYS_CONNECT_BY_PATH(opb_task_inst.instance_name ,'/') task_name FROM opb_task_inst WHERE opb_task_inst.task_type IN (68,70) START WITH workflow_id IN (select distinct w.workflow_id from rep_workflows w join rep_task_inst ti on w.workflow_id = ti.workflow_id where ti.task_type_name = 'Worklet' and w.subject_area not in ('<SUBJECT_AREAS_TO_EXCLUDE>') ) CONNECT BY PRIOR opb_task_inst.task_id = opb_task_inst.workflow_id ) temp1, opb_task temp2, opb_subject temp3 WHERE temp2.subject_id = temp3.subj_id AND temp2.task_id = SUBSTR(temp1.path,2, INSTR(temp1.path,'/', 1, 2) -2 ) ORDER BY path ASC ) where instance_id <> 0 ) wws JOIN rep_task_inst ti on ti.task_id = wws.task_id and ti.task_type = 68 JOIN REP_WORKFLOWS wf on wws.workflow_id = wf.workflow_id UNION SELECT ti.instance_name, ti.task_id, ti.version_number, ti.instance_id, wf.workflow_id, wf.workflow_name, wf.workflow_comments, wf.server_name, wf.subject_area, '' as hierarchy_structure, '' as path FROM REP_WORKFLOWS wf JOIN rep_task_inst ti on ti.workflow_id = wf.workflow_id and ti.task_type = 68 where wf.subject_area not in ('<SUBJECT_AREAS_TO_EXCLUDE>') ) ws join (select distinct workflow_id as workflow_id from rep_wflow_run) active_wflows on ws.workflow_id = active_wflows.workflow_id

The commands can be be combined in a bat script like the example below to dump out the latest log per session.

@echo off cd /d C: cd "C:\Informatica\9.1.0\clients\DeveloperClient\infacmd" echo %cd% <ADD CALLS from SQL here> pause

The session logs can take a long time to generate. We recommended that you run this step on an adhoc frequency when your Informatica jobs change.

Use kada_informatica_runtime_parser.py to generate a runtime_session_overrides.json which will be used by the Informatica extractor.

kada_informatica_runtime_parser.py

 


Step 5: Configure the Collector

The collector requires a set of parameters to connect to and extract metadata from Informatica

FIELD

FIELD TYPE

DESCRIPTION

EXAMPLE

FIELD

FIELD TYPE

DESCRIPTION

EXAMPLE

username

string

Username to log into Oracle

“myuser”

password

string

Password to log into Oracle

 

dsn

string

Datasource Name for Oracle, this can be one of the following forms

<tnsname>
<host/servicename>

“preprod”

local.example.com/oraservice”

repo_owner

string

This is the owner of all the tables required by the extractor

“inf”

oracle_client_path

string

Full path to the location of the Oracle Client libraries

“/tmp/drivers/lib/oracleinstantclient_11_9”

cached

boolean

If set to true if will prevent re-extracting data

false

input_path

string

Absolute path to the input location where runtime_session_overrides.json is placed

“/tmp/input”

output_path

string

Absolute path to the output location where files are to be written

“/tmp/output”

mask

boolean

To enable masking or not

true

KADA provides an out of the box script that reads a configuration JSON file and runs the extractor. Below is the configuration file.

kada_informatica_extractor_config.json


Step 6: Run the Collector

The following code is an example of how to run the extractor. You may need to uplift this code to meet any code standards at your organisation.

This can be executed in any python environment where the whl has been installed.

This code sample uses the kada_informatica_extractor.py for handling the configuration details

 

Advance options:

If you wish to maintain your own high water mark files else where you can use the above section’s script as a guide on how to call the extractor. The configuration file is simply the keyword arguments in JSON format.

If you are handling external arguments of the runner yourself, you’ll need to consider the following for the run method https://kadaai.atlassian.net/wiki/spaces/DAT/pages/1894318152/Notes+v2.0.0#The-run-method


username: username to sign into server
password: password to sign into server
dsn: server address
repo_owner: Oracle table owner
oracle_client_path: library path for the Oracle Instant Client
cached: Set to prevent re-extracting data
input_path: full or relative path to the directory containing the input files
output_path: full or relative path to where the outputs should go


The runtime parser can also be called in isolation


input_path: full or relative path to the directory containing the input files
output_path: full or relative path to where the outputs should go


To edit the internal SQL being run refer to https://kadaai.atlassian.net/wiki/spaces/DAT/pages/1894318152/Notes+v2.0.0#Adding-Custom-SQL


Step 7: Check the Collector Outputs

K Extracts

A set of files (eg metadata, databaselog, linkages, events etc) will be generated. These files will appear in the output_path directory you set in the configuration details

High Water Mark File

A high water mark file is created in the same directory as the execution called informatica_hwm.txt and produce files according to the configuration JSON. This file is only produced if you call the publish_hwm method.

If you want prefer file managed hwm, you can edit the location of the hwn by following these instructions https://kadaai.atlassian.net/wiki/spaces/DAT/pages/1894318152/Notes+v2.0.0#Storing-HWM-in-another-location


Step 8: Push the Extracts to K

Once the files have been validated, you can push the files to the K landing directory.

You can use Azure Storage Explorer if you want to initially do this manually. You can push the files using python as well (see Airflow example below)


Example: Using Airflow to orchestrate the Extract and Push to K

Collector Method