Collectors send metadata and logs to K. Use this collector if you cannot connect K to your source via a direct connect extractor.
Collectors are deployed and managed by you.
Using the Collector
Pre-requisites
Python 3.6+
Tableau Server Version [2018.1] and above.
Enable the Tableau Metadata API for Tableau Server
Record your Tableau server host
Create an API user for the Tableau Metadata API.
Record the Credentials (Username & Password)
The user must be
Site Administrator Creator
,Server Administrator
orSite Administrator
Record Tableau Postgres Database host
Create a DB user for the Tableau Postgres Database
Record the Credentials (Username & Password)
Ben what does the user need access to?
Install the Collector
Run the following commands to install the collector
pip install pipenv pipenv install
Run the Collector
Run the following command to run the collector
python kada-tableau-extractor.py --server http://example.com --username <YOUR ADMIN USER> --password <YOUR PASSWORD> --db_password <YOUR PASSWORD> --db_host=example.com
Push the files to the KADA Landing Directory
Create the source in K
Record the Landing Directory
Push the files that are generated from the collector to the Landing Directory.
Dean Nguyen Should add how the Admin can find the landing path.
Example orchestrating the Collector using Airflow
# built-in import os from datetime import datetime, timedelta from plugins.utils.azure_blob_storage import AzureBlobStorage # Installed from airflow import DAG from airflow.operators.python_operator import PythonOperator # TODO: configure connection KADA_SAS_TOKEN = os.getenv("KADA_SAS_TOKEN") KADA_CONTAINER = "kada-data" KADA_STORAGE_ACCOUT = "kadasaasract" KADA_BASE_FILE_NAME = "lz/dbt/Astronomer Snowflake/landing" DBT_MANIFEST_FILE = "/usr/local/airflow/include/dbt/target/manifest.json" DBT_CATALOG_FILE = "/usr/local/airflow/include/dbt/target/catalog.json" DBT_DATABASE_NAME = "RACT" DBT_PROJECT_ID = "5f04dd3ecc691a4c54e71507a357d0c3" def dbt_metadata_loader_function(): os.system('cd /usr/local/airflow/include/dbt/ && dbt compile') AzureBlobStorage.upload_file_sas_token( client=KADA_SAS_TOKEN, storage_account=KADA_STORAGE_ACCOUT, container=KADA_CONTAINER, blob=f'{KADA_BASE_FILE_NAME}/{DBT_PROJECT_ID}_manifest.json', local_path=DBT_MANIFEST_FILE ) AzureBlobStorage.upload_file_sas_token( client=KADA_SAS_TOKEN, storage_account=KADA_STORAGE_ACCOUT, container=KADA_CONTAINER, blob=f'{KADA_BASE_FILE_NAME}/{DBT_PROJECT_ID}_catalog.json', local_path=DBT_CATALOG_FILE ) AzureBlobStorage.upload_file_sas_token( client=KADA_SAS_TOKEN, storage_account=KADA_STORAGE_ACCOUT, container=KADA_CONTAINER, blob=f'{KADA_BASE_FILE_NAME}/{DBT_PROJECT_ID}_run_results.json', local_path=DBT_CATALOG_FILE ) # sourcery skip: raise-specific-error with DAG( "kada_dbt_metadata_loader_dag", start_date=datetime(2022, 2, 1), max_active_runs=3, schedule_interval=timedelta(days=1), default_args={ "owner": "airflow", "depends_on_past": False, "email_on_failure": False, "email_on_retry": False, "retries": 1, "retry_delay": timedelta(minutes=5), }, catchup=False, ) as dag: task = PythonOperator( task_id="dbt_metadata_loader", python_callable=dbt_metadata_loader_function, provide_context=True, )