About Collectors
Collectors are extractors that are developed and managed by you (A customer of K).
KADA provides python libraries that customers can use to quickly deploy a Collector.
Why you should use a Collector
There are several reasons why you may use a collector vs the direct connect extractor:
You are using the KADA SaaS offering and it cannot connect to your sources due to firewall restrictions
You want to push metadata to KADA rather than allow it pull data for Security reasons
You want to inspect the metadata before pushing it to K
Using a collector requires you to manage
Deploying and orchestrating the extract code
Managing a high water mark so the extract only pull the latest metadata
Storing and pushing the extracts to your K instance.
Pre-requisites
Python 3.6 - 3.10
MSDB database / SQLServer DB access
We currently only support SSIS package deployments to the MSDB database and not project deployments which deploy to SSISDB database, please advise KADA if you use project deployments against SSISDB
The collector will need access to the underlying SQLServer Database with permissions to read the following tables is the SSIS main databases:
MSDB.DBO.SYSSSISPACKAGES
<SSIS Logging Database>.DBO.SYSSSISLOG where <SSIS Logging Database> is the database configured for SSIS logging
Access to the KADA Collector repository
The repository is currently hosted in KADA’s Azure Blob Storage. You will be given a SAS token to access the repository. Reach out to KADA Support (support@kada.ai) if you do not have access.
Download the SSIS whl (e.g. kada_collectors_extractors_ssis-#.#.#-py3-none-any.whl)
Step 1: Create the Source in K
Create a SSIS source in K
Go to Settings, Select Sources and click Add Source
Select “Load from file system” option
Give the source a Name - e.g. SSIS Production
Add the Host name for the SSIS Server
Click Finish Setup
Step 2: Getting Access to the Source Landing Directory
Step 3: Install the Collector
It is recommended to use a python environment such as pyenv or pipenv if you are not intending to install this package at the system level.
Some python packages also have dependencies on the OS level packages, so you may be required to install additional OS packages if the below fails to install.
Run the following command to install the collector
pip install kada_collectors_extractors_ssis-#.#.#-py3-none-any.whl
Step 4: Configure the Collector
The collector requires a set of parameters to connect to and extract metadata from SSIS.
FIELD | FIELD TYPE | DESCRIPTION | EXAMPLE |
---|---|---|---|
server | string | SQLServer server | “10.1.18.19” |
username | string | Username to log into the SQLServer account | “myuser” |
password | string | Password to log into the SQLServer account |
|
logging_database | string | Database where the SSIS Logging has been setup | “ssis_logging” |
mapping | JSON | Mapping file of data source names against the onboarded host and database name in K | Assuming I have a “myDSN” data source name in powerbi, I’ll map it to host “myhost” and database “mydatabase” onboarded in K, snowflake type references are handled automatically { "myDSN": { "host": "myhost", "database": "mydatabase" } } |
driver | string | This is the ODBC driver, generally its ODBC Driver 17 for SQL Server, if you another driver installed please use that instead | “ODBC Driver 17 for SQL Server” |
output_path | string | Absolute path to the output location where files are to be written | “/tmp/output” |
mask | boolean | To enable masking or not | true |
These parameters can be added directly into the run or you can use pass the parameters in via a JSON file. The following is an example you can use that is included in the example run code below.
kada_ssis_extractor_config.json
{ "server": "", "username": "", "password": "", "logging_database": "ssis_logging", "mapping": {}, "driver": "ODBC Driver 17 for SQL Server", "output_path": "/tmp/output", "mask": true }
Step 5: Run the Collector
The following code is an example of how to run the extractor. You may need to uplift this code to meet any code standards at your organisation.
This can be executed in any python environment where the whl has been installed.
This code sample uses the kada_ssis_extractor_config.json for handling the configuration details
import os import argparse from kada_collectors.extractors.utils import load_config, get_hwm, publish_hwm, get_generic_logger from kada_collectors.extractors.ssis import Extractor get_generic_logger('root') # Set to use the root logger, you can change the context accordingly or define your own logger _type = 'ssis' dirname = os.path.dirname(__file__) filename = os.path.join(dirname, 'kada_{}_extractor_config.json'.format(_type)) parser = argparse.ArgumentParser(description='KADA SSIS Extractor.') parser.add_argument('--config', '-c', dest='config', default=filename, help='Location of the configuration json, default is the config json in the same directory as the script.') args = parser.parse_args() start_hwm, end_hwm = get_hwm(_type) ext = Extractor(**load_config(args.config)) ext.test_connection() ext.run(**{"start_hwm": start_hwm, "end_hwm": end_hwm}) publish_hwm(_type, end_hwm)
This code will produce and read a high water mark file from the same directory as the execution called ssis_hwm.txt and produce files according to the configuration JSON.
Advance options:
If you wish to maintain your own high water mark files elsewhere you can use the above section’s script as a guide on how to call the extractor. The configuration file is simply the keyword arguments in JSON format. Refer to this document for more information https://kadaai.atlassian.net/wiki/spaces/KSL/pages/1902411777/Additional+Notes#Storing-HWM-in-another-location
If you are handling external arguments of the runner yourself, you’ll need to consider additional items for the run method. Refer to this document for more information https://kadaai.atlassian.net/wiki/spaces/KSL/pages/1902411777/Additional+Notes#The-run-method
from kada_collectors.extractors.ssis import Extractor kwargs = {my args} # However you choose to construct your args hwm_kwrgs = {"start_hwm": "end_hwm": } # The hwm values ext = Extractor(**kwargs) ext.run(**hwm_kwrgs)
class Extractor(username: str = None, password: str = None, \ server: str = None, driver: str = None, logging_database: str = None, \ mapping: dict = {}, output_path: str = './output', mask: bool = False) -> None
username: username to sign into sqlserver
password: password to sign into sqlserver
server: sqlserver host
driver: sqlserver driver name
logging_database: Logging Database name for SSIS
mapping: Dict of DNS to database and hostnames
output_path: full or relative path to where the outputs should go
mask: To mask the META/DATABASE_LOG files or not
Step 6: Check the Collector Outputs
K Extracts
A set of files (eg metadata, databaselog, linkages, events etc) will be generated. These files will appear in the output_path directory you set in the configuration details
High Water Mark File
A high water mark file is created in the same directory as the execution called ssis_hwm.txt and produce files according to the configuration JSON. This file is only produced if you call the publish_hwm method.
Step 7: Push the Extracts to K
Once the files have been validated, you can push the files to the K landing directory.
You can use Azure Storage Explorer if you want to initially do this manually. You can push the files using python as well (see Airflow example below)
Example: Using Airflow to orchestrate the Extract and Push to K
# built-in import os # Installed from airflow.operators.python_operator import PythonOperator from airflow.models.dag import DAG from airflow.operators.dummy import DummyOperator from airflow.utils.dates import days_ago from airflow.utils.task_group import TaskGroup from plugins.utils.azure_blob_storage import AzureBlobStorage from kada_collectors.extractors.utils import load_config, get_hwm, publish_hwm, get_generic_logger from kada_collectors.extractors.tableau import Extractor # To be configed by the customer. # Note variables may change if using a different object store. KADA_SAS_TOKEN = os.getenv("KADA_SAS_TOKEN") KADA_CONTAINER = "" KADA_STORAGE_ACCOUNT = "" KADA_LANDING_PATH = "lz/tableau/landing" KADA_EXTRACTOR_CONFIG = { "server_address": "http://tabserver", "username": "user", "password": "password", "sites": [], "db_host": "tabserver", "db_username": "repo_user", "db_password": "repo_password", "db_port": 8060, "db_name": "workgroup", "meta_only": False, "retries": 5, "dry_run": False, "output_path": "/set/to/output/path", "mask": True, "mapping": {} } # To be implemented by the customer. # Upload to your landing zone storage. def upload(): output = KADA_EXTRACTOR_CONFIG['output_path'] for filename in os.listdir(output): if filename.endswith('.csv'): file_to_upload_path = os.path.join(output, filename) AzureBlobStorage.upload_file_sas_token( client=KADA_SAS_TOKEN, storage_account=KADA_STORAGE_ACCOUNT, container=KADA_CONTAINER, blob=f'{KADA_LANDING_PATH}/{filename}', local_path=file_to_upload_path ) with DAG(dag_id="taskgroup_example", start_date=days_ago(1)) as dag: # To be implemented by the customer. # Retrieve the timestamp from the prior run start_hwm = 'YYYY-MM-DD HH:mm:SS' end_hwm = 'YYYY-MM-DD HH:mm:SS' # timestamp now ext = Extractor(**KADA_EXTRACTOR_CONFIG) start = DummyOperator(task_id="start") with TaskGroup("taskgroup_1", tooltip="extract tableau and upload") as extract_upload: task_1 = PythonOperator( task_id="extract_tableau", python_callable=ext.run, op_kwargs={"start_hwm": start_hwm, "end_hwm": end_hwm}, provide_context=True, ) task_2 = PythonOperator( task_id="upload_extracts", python_callable=upload, op_kwargs={}, provide_context=True, ) # To be implemented by the customer. # Timestamp needs to be saved for next run task_3 = DummyOperator(task_id='save_hwm') end = DummyOperator(task_id='end') start >> extract_upload >> end