This collector is for Informatica Intelligent Cloud Services (IICS)
About Collectors
KADA provides python libraries that customers can use to quickly deploy a Collector.
Why you should use a Collector
There are several reasons why you may use a collector vs the direct connect extractor:
You are using the KADA SaaS offering and it cannot connect to your sources due to firewall restrictions
You want to push metadata to KADA rather than allow it pull data for Security reasons
You want to inspect the metadata before pushing it to K
Using a collector requires you to manage
Deploying and orchestrating the extract code
Managing a high water mark so the extract only pull the latest metadata
Storing and pushing the extracts to your K instance.
Pre-requisites
IICS with access to both V2 and V3 APIs
Python 3.6 - 3.10
Access to K landing directory
Limitations
Supports Data Integration Objects Only, specifically
Taskflows
Workflows
Mapping Tasks
Requires support of 20 requests per second if rate limiting to the API has been applied https://docs.informatica.com/integration-cloud/api-manager/current-version/api-manager-guide/api-specific-policies/api-specific-rate-limit-policy.html
We do not support gathering Metadata from Advance Filtering within Extended Objects
Supports only the following types of connections
CSVFile
Oracle
SqlServer2012
SqlsServer2016
Toolkit connections
Webservices
Toolkit CCI Connections
Snowflake
Establish IICS Access
Dean Nguyen need to populate this part with screenshots of the check boxes
Step 1: Create the Source in K
Create a IICS source in K
Go to Settings, Select Sources and click Add Source
Select “Load from File” option
Give the source a Name - e.g. IICS Production
Add the Host name for the IICS Production
Click Finish Setup
Step 2: Getting Access to the Source Landing Directory
To find your landing directory you will need to
Go to Platform Settings - Settings. Note down the value of this setting
If using Azure: storage_azure_storage_account
if using AWS:
storage_root_folder - the AWS s3 bucket
storage_aws_region - the region where the AWS s3 bucket is hosted
Go to Sources - Edit the Source you have configured. Note down the landing directory in the About this Source section
To connect to the landing directory you will need
If using Azure: a SAS token to push data to the landing directory. Request this from KADA Support (support@kada.ai)
if using AWS:
an Access key and Secret. Request this from KADA Support (support@kada.ai)
OR provide your IAM role to KADA Support to provision access.
Step 3: Install the Collector
It is recommended to use a python environment such as pyenv or pipenv if you are not intending to install this package at the system level.
Some python packages also have dependencies on the OS level packages, so you may be required to install additional OS packages if the below fails to install.
You can download the Latest Core Library and whl via Platform Settings → Sources → Download Collectors
Run the following command to install the collector
pip install kada_collectors_extractors_<version>-none-any.whl
You will also need to install the common library kada_collectors_lib for this collector to function properly.
pip install kada_collectors_lib-<version>-none-any.whl
Step 4: Configure the Collector
The collector requires a set of parameters to connect to and extract metadata from IICS
FIELD | FIELD TYPE | DESCRIPTION | EXAMPLE |
---|---|---|---|
username | string | Username to log into IICS | “myuser” |
password | string | Password to log into IICS | |
login_url | string | This is the base url for your IICS login service, see https://docs.informatica.com/integration-cloud/b2b-gateway/current-version/rest-api-reference/platform-rest-api-version-2-resources/login.html for more details | |
days_active | integer | Number of days which a task must have run to be considered active | 60 |
timeout | integer | Timeout in seconds for IICS API responses, sometimes IICS server can be slow so tune this accordingly if needed | 20 |
output_path | string | Absolute path to the output location where files are to be written | “/tmp/output” |
mask | boolean | To enable masking or not | true |
compress | boolean | To gzip the output or not | true |
KADA provides an out of the box script that reads a configuration JSON file and runs the extractor. Below is the configuration file.
kada_iics_extractor_config.json
{ "username": "", "password": "", "login_url": "", "timeout": 30, "active_days": 60, "mapping": {}, "output_path": "/tmp/output", "mask": true, "compress": true }
Step 5: Run the Collector
The following code is an example of how to run the extractor. You may need to uplift this code to meet any code standards at your organisation.
This can be executed in any python environment where the whl has been installed.
This is the wrapper script: kada_iics_extractor.py
import os import argparse from kada_collectors.extractors.utils import load_config, get_hwm, publish_hwm, get_generic_logger from kada_collectors.extractors.iics import Extractor get_generic_logger('root') # Set to use the root logger, you can change the context accordingly or define your own logger _type = 'iics' dirname = os.path.dirname(__file__) filename = os.path.join(dirname, 'kada_{}_extractor_config.json'.format(_type)) parser = argparse.ArgumentParser(description='KADA IICS Extractor.') parser.add_argument('--config', '-c', dest='config', default=filename, help='Location of the configuration json, default is the config json in the same directory as the script.') args = parser.parse_args() start_hwm, end_hwm = get_hwm(_type) ext = Extractor(**load_config(args.config)) ext.test_connection() ext.run(**{"start_hwm": start_hwm, "end_hwm": end_hwm}) publish_hwm(_type, end_hwm)
Advance options:
If you wish to maintain your own high water mark files else where you can use the above section’s script as a guide on how to call the extractor. The configuration file is simply the keyword arguments in JSON format.
If you are handling external arguments of the runner yourself, you’ll need to consider the following for the run method https://kadaai.atlassian.net/wiki/spaces/KSL/pages/1902411777/Additional+Notes#Extractor-run-method
from kada_collectors.extractors.snowflake import Extractor kwargs = {my args} # However you choose to construct your args hwm_kwrgs = {"start_hwm": "end_hwm": } # The hwm values ext = Extractor(**kwargs) ext.run(**hwm_kwrgs)
class Extractor(username: str=None, password: str=None, login_url: str=None, active_days: int=60, mapping: dict={}, timeout: int=30, output_path: str='./output', mask: bool=False, compress: bool=False) -> None
username: username to sign into server
password: password to sign into server
login_url: IICS login address
active_days: assessment window in days to consider tasks to be active
timeout: timeout in seconds for API responses
output_path: full or relative path to where the outputs should go
mask: to mask files or not
compress: To gzip output files or not
Step 6: Check the Collector Outputs
K Extracts
A set of files (eg metadata, databaselog, linkages, events etc) will be generated. These files will appear in the output_path directory you set in the configuration details
High Water Mark File
A high water mark file is created in the same directory as the execution called iics_hwm.txt and produce files according to the configuration JSON. This file is only produced if you call the publish_hwm method.
If you want prefer file managed hwm, you can edit the location of the hwn by following these instructions Additional Notes
Step 8: Push the Extracts to K
Once the files have been validated, you can push the files to the K landing directory.
You can use Azure Storage Explorer if you want to initially do this manually. You can push the files using python as well (see Airflow example below)
Example: Using Airflow to orchestrate the Extract and Push to K
# built-in import os # Installed from airflow.operators.python_operator import PythonOperator from airflow.models.dag import DAG from airflow.operators.dummy import DummyOperator from airflow.utils.dates import days_ago from airflow.utils.task_group import TaskGroup from plugins.utils.azure_blob_storage import AzureBlobStorage from kada_collectors.extractors.utils import load_config, get_hwm, publish_hwm, get_generic_logger from kada_collectors.extractors.tableau import Extractor # To be configed by the customer. # Note variables may change if using a different object store. KADA_SAS_TOKEN = os.getenv("KADA_SAS_TOKEN") KADA_CONTAINER = "" KADA_STORAGE_ACCOUNT = "" KADA_LANDING_PATH = "lz/tableau/landing" KADA_EXTRACTOR_CONFIG = { "server_address": "http://tabserver", "username": "user", "password": "password", "sites": [], "db_host": "tabserver", "db_username": "repo_user", "db_password": "repo_password", "db_port": 8060, "db_name": "workgroup", "meta_only": False, "retries": 5, "dry_run": False, "output_path": "/set/to/output/path", "mask": True, "mapping": {} } # To be implemented by the customer. # Upload to your landing zone storage. # Change '.csv' to '.csv.gz' if you set compress = true in the config def upload(): output = KADA_EXTRACTOR_CONFIG['output_path'] for filename in os.listdir(output): if filename.endswith('.csv'): file_to_upload_path = os.path.join(output, filename) AzureBlobStorage.upload_file_sas_token( client=KADA_SAS_TOKEN, storage_account=KADA_STORAGE_ACCOUNT, container=KADA_CONTAINER, blob=f'{KADA_LANDING_PATH}/{filename}', local_path=file_to_upload_path ) with DAG(dag_id="taskgroup_example", start_date=days_ago(1)) as dag: # To be implemented by the customer. # Retrieve the timestamp from the prior run start_hwm = 'YYYY-MM-DD HH:mm:SS' end_hwm = 'YYYY-MM-DD HH:mm:SS' # timestamp now ext = Extractor(**KADA_EXTRACTOR_CONFIG) start = DummyOperator(task_id="start") with TaskGroup("taskgroup_1", tooltip="extract tableau and upload") as extract_upload: task_1 = PythonOperator( task_id="extract_tableau", python_callable=ext.run, op_kwargs={"start_hwm": start_hwm, "end_hwm": end_hwm}, provide_context=True, ) task_2 = PythonOperator( task_id="upload_extracts", python_callable=upload, op_kwargs={}, provide_context=True, ) # To be implemented by the customer. # Timestamp needs to be saved for next run task_3 = DummyOperator(task_id='save_hwm') end = DummyOperator(task_id='end') start >> extract_upload >> end