Document toolboxDocument toolbox

Power BI (via Collector method) - v3.2.0

About Collectors

Collector Method

Pre-requisites

Collector Server Minimum Requirements

PowerBI Requirements


Step 1: Create the Source in K

Create a Power BI source in K

  • Go to Settings, Select Sources and click Add Source

  • Select “Load from File” option

  • Give the source a Name - e.g. PowerBI Production

  • Add the Host name for the PowerBI Server

  • Click Finish Setup


Step 2: Getting Access to the Source Landing Directory

Collector Method

Step 3: Install the Collector

It is recommended to use a python environment such as pyenv or pipenv if you are not intending to install this package at the system level.

Some python packages also have dependencies on the OS level packages, so you may be required to install additional OS packages if the below fails to install.

You can download the latest Core Library and whl via Platform Settings → SourcesDownload Collectors

Run the following command to install the collector.

pip install kada_collectors_extractors_<version>-none-any.whl

You will also need to install the common library kada_collectors_lib for this collector to function properly.

pip install kada_collectors_lib-<version>-none-any.whl

Step 4: Configure the Collector

The collector requires a set of parameters to connect to and extract metadata from Power BI

FIELD

FIELD TYPE

DESCRIPTION

EXAMPLE

FIELD

FIELD TYPE

DESCRIPTION

EXAMPLE

client

string

Onboarded client in Azure to access powerbi

 

secret

string

Onboarded client secret in Azure to access powerbi

 

tenant

string

Tenant ID of where powerbi exists

 

output_path

string

Absolute path to the output location where files are to be written

“/tmp/output”

mask

boolean

To enable masking or not

true

timeout

integer

Timeout in seconds allowed against the powerbi APIs, for slower connections we recommend 30, default is 20

20

export_timeout

integer

Timeout in seconds allowed against the powerbi export pbix APIs, we recommend not setting this lower than 120

120

mapping

JSON

Mapping file of data source names against the onboarded host and database name in K

Assuming I have a “myDSN” data source name in powerbi, I’ll map it to host “myhost” and database “mydatabase” onboarded in K, snowflake type references are handled automatically

{ "myDSN": { "host": "myhost", "database": "mydatabase" } }

filter_flag

boolean

Should we be filtering out workspaces based on filter_workspaces as a whitelist?

false

filter_workspaces

list<string>

List of workspace names that should be processed, this is case insensitive. Note that personal workspaces are excluded globally and will never be included even if you include it here.

[“data lab”, “analysis models”]

compress

boolean

To gzip the output or not

true

These parameters can be added directly into the run or you can use pass the parameters in via a JSON file. The following is an example you can use that is included in the example run code below.

kada_powerbi_extractor_config.json

{ "client": "", "secret": "", "tenant": "", "output_path": "/tmp/output", "mask": true, "timeout": 20, "export_timeout": 120, "filter_flag": true, "filter_workspaces": [] "mapping": { "myDSN": { "host": "myhost", "database": "mydatabase" } }, "compress": true }

Step 5: Run the Collector

The following code is an example of how to run the extractor. You may need to uplift this code to meet any code standards at your organisation.

This can be executed in any python environment where the whl has been installed.

This code sample uses the kada_powerbi_extractor_config.json for handling the configuration details

import os import argparse from kada_collectors.extractors.utils import load_config, get_hwm, publish_hwm, get_generic_logger from kada_collectors.extractors.powerbi import Extractor get_generic_logger('root') # Set to use the root logger, you can change the context accordingly or define your own logger _type = 'powerbi' dirname = os.path.dirname(__file__) filename = os.path.join(dirname, 'kada_{}_extractor_config.json'.format(_type)) parser = argparse.ArgumentParser(description='KADA PowerBI Extractor.') parser.add_argument('--config', '-c', dest='config', default=filename, help='Location of the configuration json, default is the config json in the same directory as the script.') parser.add_argument('--name', '-n', dest='name', default=_type, help='Name of the collector instance.') args = parser.parse_args() start_hwm, end_hwm = get_hwm(args.name) ext = Extractor(**load_config(args.config)) ext.test_connection() ext.run(**{"start_hwm": start_hwm, "end_hwm": end_hwm}) publish_hwm(_type, end_hwm)

 

Advance options:

If you wish to maintain your own high water mark files elsewhere you can use the above section’s script as a guide on how to call the extractor. The configuration file is simply the keyword arguments in JSON format. Refer to this document for more information Collector Integration General Notes | Storing HWM in another location

If you are handling external arguments of the runner yourself, you’ll need to consider additional items for the run method. Refer to this document for more information Collector Integration General Notes | The run method


class Extractor(client: str = None, secret: str = None, tenant: str = None, \ mapping: dict = {}, filter_flag: bool = False, filter_workspaces: list = [], \ timeout: int = 10, export_timeout: int=120, output_path: str = './output', \ mask: bool = False, compress: bool = False) -> None

client: The Client ID for the registered application for access to PowerBI APIs
secret: The Secret for the registered application for access to PowerBI APIs
tenant: The Tenant ID for the registered application for access to PowerBI APIs
mapping: Dict of DNS to database and hostnames
filter_flag: Should we be filtering out workspaces based on filter_workspaces as a whitelist
filter_workspaces: whitelist of workspaces
timeout: Timeout for the API call
export_timeout: Timeout in seconds for exporting pbix files, defaults to 120 seconds
output_path: full or relative path to where the outputs should go
mask: To mask the META/DATABASE_LOG files or not
compress: To gzip output files or not


Step 6: Check the Collector Outputs

K Extracts

A set of files (eg metadata, databaselog, linkages, events etc) will be generated. These files will appear in the output_path directory you set in the configuration details

High Water Mark File

A high water mark file is created in the same directory as the execution called powerbi_hwm.txt and produce files according to the configuration JSON. This file is only produced if you call the publish_hwm method.


Step 7: Push the Extracts to K

Once the files have been validated, you can push the files to the K landing directory.

You can use Azure Storage Explorer if you want to initially do this manually. You can push the files using python as well (see Airflow example below)


Example: Using Airflow to orchestrate the Extract and Push to K

Collector Method