Teradata (via Collector method) - v3.0.0
About Collectors
Pre-requisites
Python 3.8 - 3.11
Access to K landing directory
Access to Teradata
Step 1: Create Teradata permission
This step is performed by the Teradata Admin.
Login to Teradata
Create an account with read access to the following tables
dbc.DBQLOGTBL
dbc.DBQLSQLTBL
dbc.TABLESV
dbc.INDICESV
dbc.ALL_RI_CHILDRENV
dbc.TVM
dbc.TABLETEXTV
pdcrinfo.DBQLOGTBL
pdcrinfo.DBQLSQLTBL
SHOW command access on tables, macros, procedures.-- apply at the database level GRANT SHOW ON DatabaseName TO KadaUser -- or apply to individual tables to limit to a subset of tables GRANT SHOW ON TableName TO KadaUser
Step 2: Create the Source in K
Go to Settings, Select Sources and click Add Source
Select Teradata as the Source Type
Select “Load from File system” option
Give the source a Name - e.g. Teradata Production
Add the Host name for the Teradata Server
Click Finish Setup
Step 3: Getting Access to the Source Landing Directory
Step 4: Install the Collector
It is recommended to use a python environment such as pyenv or pipenv if you are not intending to install this package at the system level.
Some python packages also have dependencies on the OS level packages, so you may be required to install additional OS packages if the below fails to install.
You can download the latest Core Library and whl via Platform Settings → Sources → Download Collectors
Run the following command to install the collector
pip install kada_collectors_extractors_<version>-none-any.whl
You will also need to install the common library kada_collectors_lib for this collector to function properly.
pip install kada_collectors_lib-<version>-none-any.whl
You will also need an ODBC package installed at the OS level for pyodbc to use as well as a Teradata ODBC driver, refer to Connectivity | Teradata Downloads
Teradata ODBC driver install may overwrite ODBC libraries depending on the package, read the docs carefully.
Step 5: Configure the Collector
The collector requires a set of parameters to connect to and extract metadata from Teradata.
FIELD | FIELD TYPE | DESCRIPTION | EXAMPLE |
---|---|---|---|
server | string | SQLServer server | “10.1.18.19” |
username | string | Username to log into the SQLServer account | “myuser” |
password | string | Password to log into the SQLServer account |
|
pdcr_enabled | boolean | Is PDCR enabled on teradata? See Teradata Online Documentation | Quick access to technical manuals | false |
driver | string | This is the ODBC driver, generally its ODBC Driver 16.20 or whatever version you have installed. | “Teradata Database ODBC Driver 16.20” |
output_path | string | Absolute path to the output location where files are to be written | “/tmp/output” |
mask | boolean | To enable masking or not | true |
compress | boolean | To gzip the output or not | true |
These parameters can be added directly into the run or you can use pass the parameters in via a JSON file.
KADA provides an out of the box script that reads a configuration JSON file and runs the extractor. Below is the configuration file.
kada_teradata_extractor_config.json
Step 6: Run the Collector
The following code is an example of how to run the extractor. You may need to uplift this code to meet any code standards at your organisation.
This can be executed in any python environment where the whl has been installed. It will produce and read a high water mark file from the same directory as the execution called teradata_hwm.txt and produce files according to the configuration JSON.
This is the wrapper script: kada_teradata_extractor.py
Advance options:
If you wish to maintain your own high water mark files elsewhere you can use the above section’s script as a guide on how to call the extractor. The configuration file is simply the keyword arguments in JSON format. Refer to this document for more information Collector Integration General Notes | Storing HWM in another location
If you are handling external arguments of the runner yourself, you’ll need to consider additional items for the run method. Refer to this document for more information Collector Integration General Notes | The run method
username: username to sign into teradata
password: password to sign into teradata
server: teradata host
driver: teradata driver name
pdcr_enabled: Does teradata hace pdcr enabled?
database_name: Onboarded K database name
output_path: full or relative path to where the outputs should go
mask: To mask the META/DATABASE_LOG files or not
compress: To gzip output files or not
Step 7: Check the Collector Outputs
K Extracts
A set of files (eg metadata, databaselog, linkages, events etc) will be generated. These files will appear in the output_path directory you set in the configuration details
High Water Mark File
A high water mark file is created in the same directory as the execution called teradata_hwm.txt and produce files according to the configuration JSON. This file is only produced if you call the publish_hwm method.
If you want prefer file managed hwm, you can edit the location of the hwn by following these instructions Collector Integration General Notes | Storing High Water Marks (HWM)
Step 8: Push the Extracts to K
Once the files have been validated, you can push the files to the K landing directory.
You can use Azure Storage Explorer if you want to initially do this manually. You can push the files using python as well (see Airflow example below)
Example: Using Airflow to orchestrate the Extract and Push to K